Typhoid fever - Nature.com

Abstract

Typhoid fever is an invasive bacterial disease associated with bloodstream infection that causes a high burden of disease in Africa and Asia. Typhoid primarily affects individuals ranging from infants through to young adults. The causative organism, Salmonella enterica subsp. enterica serovar Typhi is transmitted via the faecal–oral route, crossing the intestinal epithelium and disseminating to systemic and intracellular sites, causing an undifferentiated febrile illness. Blood culture remains the practical reference standard for diagnosis of typhoid fever, where culture testing is available, but novel diagnostic modalities are an important priority under investigation. Since 2017, remarkable progress has been made in defining the global burden of both typhoid fever and antimicrobial resistance; in understanding disease pathogenesis and immunological protection through the use of controlled human infection; and in advancing effective vaccination programmes through strategic multipartner collaboration and targeted clinical trials in multiple high-incidence priority settings. This Primer thus offers a timely update of progress and perspective on future priorities for the global scientific community.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Learn more

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global incidence of typhoid fever.
Fig. 2: S. Typhi genotype prevalence by world region.
Fig. 3: Pathogenesis of typhoid fever following pathogen ingestion.
Fig. 4: Clinical signs and symptoms of typhoid fever.

References

  1. Dougan, G. & Baker, S. Salmonella enterica serovar Typhi and the pathogenesis of typhoid fever. Annu. Rev. Microbiol. 68, 317–336 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization. Typhoid: vaccine preventable diseases surveillance standards. WHO https://www.who.int/publications/m/item/vaccine-preventable-diseases-surveillance-standards-typhoid (2018).

  3. Basnyat, B., Qamar, F. N., Rupali, P., Ahmed, T. & Parry, C. M. Enteric fever. BMJ 372, n437 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Von Drigalski, K. W. Ueber Ergebnisse bei der Bekämpfung des Typhus nach Robert Koch [German]. Zentralbl. Bakteriol. 35, 776 (1904).

    Google Scholar 

  5. Kirchhelle, C., Pollard, A. J. & Vanderslott, S. Typhoid – from past to future. Clin. Infect. Dis. 69, S375–s376 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ames, W. R. & Robins, M. Age and sex as factors in the development of the typhoid carrier state, and a method for estimating carrier prevalence. Am. J. Public. Health Nations Health 33, 221–230 (1943).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Antillon, M., Saad, N. J., Baker, S., Pollard, A. J. & Pitzer, V. E. The relationship between blood sample volume and diagnostic sensitivity of blood culture for typhoid and paratyphoid fever: a systematic review and meta-analysis. J. Infect. Dis. 218, S255–S267 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nizamuddin, S., Khan, E. A., Chattaway, M. A. & Godbole, G. Case of carbapenem-resistant Salmonella Typhi infection, Pakistan, 2022. Emerg. Infect. Dis. J. 29, 2395–2397 (2023).

    Article  Google Scholar 

  9. Phillips, M. T., Owers, K. A., Grenfell, B. T. & Pitzer, V. E. Changes in historical typhoid transmission across 16 U.S. cities, 1889-1931: quantifying the impact of investments in water and sewer infrastructures. PLoS Negl. Trop. Dis. 14, e0008048 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vanderslott, S., Phillips, M. T., Pitzer, V. E. & Kirchhelle, C. Water and filth: reevaluating the first era of sanitary typhoid intervention (1840-1940). Clin. Infect. Dis. 69, S377–S384 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. GBD 2017 Typhoid and Paratyphoid Collaborators The global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect. Dis. 19, 369–381 (2019).

    Article  Google Scholar 

  12. Crump, J. A. Progress in typhoid fever epidemiology. Clin. Infect. Dis. 68, S4–S9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Appiah, G. D. et al. Typhoid outbreaks, 1989-2018: implications for prevention and control. Am. J. Trop. Med. Hyg. 102, 1296–1305 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Reller et al. Presented at the 39th Annual Meeting of the Infectious Diseases Society of America (2022).

  15. Mitscherlich, E. & Marth, E. H. Microbial survival in the environment (eds Mitscherlich, E. & Marth E.H.) 1–560 (Springer, 1984).

  16. Cho, J.-C. & Kim, S. J. Viable, but non-culturable, state of a green fluorescence protein-tagged environmental isolate of Salmonella Typhi in groundwater and pond water. FEMS Microbiol. Lett. 170, 257–264 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Kingsley, R. A. et al. Functional analysis of Salmonella Typhi adaptation to survival in water. Env. Microbiol. 20, 4079–4090 (2018).

    Article  CAS  Google Scholar 

  18. Andrews, J. R. et al. Environmental surveillance as a tool for identifying high-risk settings for typhoid transmission. Clin. Infect. Dis. 71, S71–S78 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Deen, J. et al. Community-acquired bacterial bloodstream infections in developing countries in south and southeast Asia: a systematic review. Lancet Infect. Dis. 12, 480–487 (2012).

    Article  PubMed  Google Scholar 

  20. Reddy, E. A., Shaw, A. V. & Crump, J. A. Community acquired bloodstream infections in Africa: a systematic review and meta-analysis. Lancet Infect. Dis. 10, 417–432 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Marchello, C. S., Dale, A. P., Pisharody, S., Rubach, M. P. & Crump, J. A. Prevalence of community-onset bloodstream infections among hospitalized patients in Africa and Asia: a systematic review and meta-analysis. Antimicrob. Agents Chemother. 64, e01974-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Garrett, D. O. et al. Incidence of typhoid and paratyphoid fever in Bangladesh, Nepal, and Pakistan: results of the Surveillance for Enteric Fever in Asia Project. Lancet Glob. Health 10, e978–e988 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marks, F. et al. The Severe Typhoid in Africa Program: incidences of typhoid fever in Burkina Faso, Democratic Republic of Congo, Ethiopia, Ghana, Madagascar, and Nigeria. Preprint at https://ssrn.com/abstract=4292849 (2022).

  24. Marks, F. et al. Incidence of invasive Salmonella disease in sub-Saharan Africa: a multicentre population-based surveillance study. Lancet Glob. Health 5, e310–e323 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Meiring, J. E. et al. Burden of enteric fever at three urban sites in Africa and Asia: a multicentre population-based study. Lancet Glob. Health 9, e1688–e1696 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. John, J. et al. Burden of typhoid and paratyphoid fever in India. N. Engl. J. Med. 388, 1491–1500 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Crump, J. A., Luby, S. P. & Mintz, E. D. The global burden of typhoid fever. Bull. World Health Organ. 82, 346–353 (2004).

    PubMed  PubMed Central  Google Scholar 

  28. Antillón, M. et al. The burden of typhoid fever in low- and middle-income countries: a meta-regression approach. PLoS Negl. Trop. Dis. 11, e0005376 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mogasale, V. et al. Burden of typhoid fever in low-income and middle-income countries: a systematic, literature-based update with risk-factor adjustment. Lancet Glob. Health 2, e570–e580 (2014).

    Article  PubMed  Google Scholar 

  30. Buckle, G. C., Walker, C. L. & Black, R. E. Typhoid fever and paratyphoid fever: systematic review to estimate global morbidity and mortality for 2010. J. Glob. Health 2, 10401 (2012).

    Article  Google Scholar 

  31. Institute of Health Metrics and Evaluation. Global incidence of typhoid fever. IHME https://vizhub.healthdata.org/gbd-compare/ (2019).

  32. Crump, J. A. & Kirk, M. D. Estimating the burden of febrile illnesses. PLoS Negl. Trop. Dis. 9, e0004040 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Marchello, C. S., Hong, C. Y. & Crump, J. A. Global typhoid fever incidence: a systematic review and meta-analysis. Clin. Infect. Dis. 68, S105–S116 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Crump, J. A. et al. Estimating the incidence of typhoid fever and other febrile illnesses in developing countries. Emerg. Infect. Dis. 9, 539–544 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Marchello, C. S., Birkhold, M. & Crump, J. A. Complications and mortality of typhoid fever: a global systematic review and meta-analysis. J. Infect. 81, 902–910 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gibani, M. M. et al. Homologous and heterologous re-challenge with Salmonella Typhi and Salmonella Paratyphi A in a randomised controlled human infection model. PLoS Negl. Trop. Dis. 14, e0008783 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Im, J. et al. Protection conferred by typhoid fever against recurrent typhoid fever in urban Kolkata. PLoS Negl. Trop. Dis. 14, e0008530 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brockett, S. et al. Associations among water, sanitation, and hygiene, and food exposures and typhoid fever in case-control studies: a systematic review and meta-analysis. Am. J. Trop. Med. Hyg. 103, 1020–1031 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tadesse, B. T. et al. Prevention of typhoid by Vi conjugate vaccine and achievable improvements in household water, sanitation, and hygiene: evidence from a cluster-randomized trial in Dhaka, Bangladesh. Clin. Infect. Dis. 75, 1681–1687 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gunn, J. S. et al. Salmonella chronic carriage: epidemiology, diagnosis, and gallbladder persistence. Trends Microbiol. 22, 648–655 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dunstan, S. J. et al. Variation at HLA-DRB1 is associated with resistance to enteric fever. Nat. Genet. 46, 1333–1336 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saad, N. J. et al. Seasonal dynamics of typhoid and paratyphoid fever. Sci. Rep. 8, 6870 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Thindwa, D., Chipeta, M. G., Henrion, M. Y. R. & Gordon, M. A. Distinct climate influences on the risk of typhoid compared to invasive non-typhoid Salmonella disease in Blantyre, Malawi. Sci. Rep. 9, 20310 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Levy, K., Smith, S. M. & Carlton, E. J. Climate change impacts on waterborne diseases: moving toward designing interventions. Curr. Env. Health Rep. 5, 272–282 (2018).

    Article  Google Scholar 

  45. Gao, Q. et al. Impact of temperature and rainfall on typhoid/paratyphoid fever in Taizhou, China: effect estimation and vulnerable group identification. Am. J. Trop. Med. Hyg. 106, 532–542 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hickman-Brenner, F. W. & Farmer, J. J. III Bacteriophage types of Salmonella typhi in the United States from 1974 through 1981. J. Clin. Microbiol. 17, 172–174 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chattaway, M. A., Langridge, G. C. & Wain, J. Salmonella nomenclature in the genomic era: a time for change. Sci. Rep. 11, 7494 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wong, V. K. et al. Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events. Nat. Genet. 47, 632–639 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tanmoy, A. M. et al. Paratype: a genotyping tool for Salmonella Paratyphi A reveals its global genomic diversity. Nat. Commun. 13, 7912 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kariuki, S. et al. Multiple introductions of multidrug-resistant typhoid associated with acute infection and asymptomatic carriage, Kenya. Elife 10, e67852 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dyson, Z. A. et al. Genomic epidemiology and antimicrobial resistance transmission of Salmonella Typhi and Paratyphi A at three urban sites in Africa and Asia. Preprint at medRxiv https://doi.org/10.1101/2023.03.11.23286741 (2023).

  52. Wong, V. K. et al. An extended genotyping framework for Salmonella enterica serovar Typhi, the cause of human typhoid. Nat. Commun. 7, 12827 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dyson, Z. A. & Holt, K. E. Five years of GenoTyphi: updates to the Global Salmonella Typhi Genotyping Framework. J. Infect. Dis. 224, S775–S780 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Carey, M. E. et al. Global diversity and antimicrobial resistance of typhoid fever pathogens: insights from a meta-analysis of 13,000 Salmonella Typhi genomes. eLife 12, e85867 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  55. da Silva, K. E. et al. The international and intercontinental spread and expansion of antimicrobial-resistant Salmonella Typhi: a genomic epidemiology study. Lancet Microbe 3, e567–e577 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Comments

Popular posts from this blog